Archive for the 'Nueva versión' Category

Presentando CRUST

domingo, agosto 26th, 2018

Acabo de lanzar CRUST. Se trata de un analizador estático de C que permite disponer en C de una gestión de memoria similar a la de RUST.

Y es que RUST está de moda, pues al ofrecer seguridad en el acceso a memoria dinámica pero sin necesidad de un runtime (como un recolector de basura) o de otras técnicas (como el conteo de referencias), permite exprimir al máximo el rendimiento. El problema es que RUST es un lenguaje nuevo, con su sintaxis propia (que, además, diverge de la de C u otros lenguajes bastante), y que, por tanto, tiene una curva de aprendizaje.

Por otro lado, existen casos en los que no se puede utilizar (todavía) RUST, como el de un microcontrolador PIC, Atmel…, pues hace falta un compilador específico. En otros microcontroladores, como los basados en ARM, es posible utilizarlo, pero sigue teniendo el problema de que no es un compilador oficial, y por tanto hay que hacer algún que otro malabar para integrarlo en la toolchain del fabricante.

Es aquí donde CRUST hace su aparición: como ya dije se trata de un analizador estático de C que permite disponer de (más o menos, claro) las mismas comprobaciones de seguridad que ofrece RUST para la gestión de memoria dinámica, de manera que es más difícil que un programa sufra referencias colgantes o dangling pointers, o pérdidas de memoria.

A la hora de diseñar CRUST tenía una cosa muy clara en mente: no podía crear un nuevo lenguaje parecido a C, sino que tenía que seguir siendo C puro, compilable con absolutamente cualquier compilador estándar. Eso eliminaba cualquier tipo de preprocesador del estilo de Metaobject o similares. También suponía rechazar cualquier tipo de conjunto de macros que pudiese alterar el código de la más mínima manera. Y por supuesto, el uso de bibliotecas estaba completamente descartado.

La solución consistió en crear una serie de calificadores específicos, similares en funcionamiento a los calificadores volatile o const ya disponibles en C, que permitan al analizador saber si un puntero concreto es gestionado o no-gestionado, así como otras propiedades importantes para el analizador. Estos calificadores comienzan todos con el prefijo __crust_ para evitar interferencias con nombres de variables o futuras adiciones al lenguaje C. La clave de estos calificadores es que no son necesarios en absoluto para compilar el código.

Por supuesto, ningún compilador aceptaría un código con dichos calificadores, y por eso es necesario incluir un fichero de cabecera (que se incluye con el analizador estático) que define dichos nuevos calificadores como espacios en blanco para el preprocesador de C. De esta manera, a la hora de compilar estos calificadores simplemente “desaparecen”, y sólo son tenidos en cuenta cuando se utiliza el analizador. Este es un trozo de dicho fichero de cabecera, para que se entienda mejor:

#ifndef ENABLE_CRUST_TAGS

#ifndef __crust__
#define __crust__
#endif

#ifndef __crust_borrow__
#define __crust_borrow__
#endif

#ifndef __crust_recycle__
#define __crust_recycle__
#endif

#ifndef __crust_alias__
#define __crust_alias__
#endif

#ifndef __crust_no_0__
#define __crust_no_0__
#endif

...

Como se ve, se define cada posible calificador como una cadena vacía, lo que hace que el preprocesador se encargue de limpiar el código y dejarlo listo para el compilador, sin necesidad de modificar nada. Esto permite programar como de costumbre, simplemente etiquetando aquellos punteros que deben ser gestionados como un bloque CRUST, y compilando el código normalmente con el toolchain habitual, y sólo de vez en cuando pasar el analizador estático para comprobar si hemos cometido algún error al liberar o utilizar uno de estos bloques. Por supuesto, no es necesario escribir este fichero a mano, sino que se puede generar automáticamente simplemente llamando al analizador estático con el comando crust –headers, con lo que generará dicho fichero en el directorio actual.

La base de las reglas de gestión de memoria de CRUST (y, por extensión, de RUST) es que cada función es responsable de todos los bloques de memoria que genera o recibe. Así, si una función pide un bloque de memoria dinámica (por ejemplo con malloc), es su responsabilidad liberarlo o asegurarse que sea liberado. Esto puede ocurrir de tres maneras diferentes:

  • Puede liberar el bloque directamente ella misma
  • Puede llamar a otra función pasando dicho bloque como un parámetro, de manera que pase a ser responsabilidad de la nueva función garantizar que se libere dicho bloque
  • Puede devolver el bloque a la función llamante, de manera que ésta recibe la responsabilidad de liberarlo

No hay mucho más. Por supuesto existen, a mayores, otros detalles que hacen que la cosa no sea tan sencilla, por lo que para una explicación más en profundidad recomiendo leer como es el modelo de memoria de RUST.

Un ejemplo sencillo de como trabaja CRUST se puede ver en este trozo de código:

// SIEMPRE añadimos crust.h al principio
// El fichero tiene que estar en el proyecto
#include "crust.h"
#include <unistd.h>

// Definimos una estructura como "gestionada"
// simplemente añadiendo __crust__ a su definición
// Utilizamos un typedef para ahorrarnos tener que poner
// __crust__ en todos los sitios donde se utiliza
typedef __crust__ struct {
	int member;
	int p1;
	int p2;
} *un_tipo_t;

// esta función crea un nuevo bloque "gestionado" y lo devuelve

un_tipo_t funcion1();

// esta función recibe un bloque "gestionado",
// pero no lo libera antes de salir

void funcion2(un_tipo_t __crust_borrow__ parametro);

// esta función recibe un puntero a un bloque "gestionado",
// y además lo libera antes de salir

uint32_t funcion3(un_tipo_t parametro);

void main() {

	un_tipo_t bloque = funcion1();

	funcion2(bloque);
	funcion3(bloque);
}

Aquí vemos varias cosas:

  • Primero hacemos un typedef de un puntero a una estructura, y además incluimos el calificador __crust__. Esto significa que absolutamente cualquier variable de tipo un_tipo_t será gestionada, y por tanto sujeta a las reglas de CRUST.
  • Luego tenemos tres definiciones de funciones que “hacen cosas” con tipos un_tipo_t.
  • Finalmente, tenemos el bloque main. En él creamos un puntero de tipo un_tipo_t y le asignamos el bloque que nos devuelve funcion2.
  • A continuación llamamos con dicho bloque a funcion3. Como dicho parámetro está marcado como __crust_borrow__, sabemos que dicha función nunca liberará dicho bloque, por lo que después de llamarla seguirá estando disponible y podemos seguir utilizándolo.
  • Finalmente llamamos también con dicho bloque a funcion1. Como el parámetro de dicha función no está marcado como __crust_borrow__, sabemos a ciencia cierta que ese bloque que estamos pasando va a ser liberado dentro de ella, por lo que a partir de este punto no podemos volver a utilizarlo.
  • Llegamos al final de la función, y como la variable bloque ya no apunta a nada (pues el bloque fue liberado al llamar a funcion3), no hay riesgo de que tengamos una fuga de memoria.

Este código no devolvería ningún error al pasar por el analizador estático CRUST precisamente porque cumple con precisión las reglas de gestión de memoria. Sin embargo, si hiciésemos un cambio tan sencillo como invertir el orden de las llamadas a funcion2() y funcion3(), obtendríamos un error:

ERROR: Argument 1 when calling function 'funcion2' at line 41 was freed at line 40
Total: 1 errors.

El motivo es que funcion2() libera el bloque de memoria que recibe, lo que significa que cuando llamamos después a funcion3() con él, CRUST sabe que ese bloque de memoria ya no existe, y nos avisa.

Algo similar ocurre si sólo llamamos a funcion2() (que sabemos que no libera el bloque) pero no llamamos a funcion3():

ERROR: Memory block 'bloque', initialized at line 38, is still in use at exit point in line 41
Total: 1 errors.

Aquí CRUST se da cuenta de que el bloque que hemos inicializado no ha sido liberado al llegar al final de la función. Si lo dejásemos así tendríamos una fuga de memoria, y por eso nos avisa diligentemente.

Por supuesto CRUST es lo suficientemente inteligente como para seguir las posibles ramas de ejecución del código. Probemos a modificar la función main() anterior y dejémosla así:

void main() {
	// "tmp" tiene un valor que desconocemos
	uint8_t tmp;

	un_tipo_t bloque = funcion1();

	if (tmp == 5) {
		return;
	}

	if (tmp == 8) {
		bloque = NULL;
	}

	if (tmp == 7) {
		bloque = funcion1();
	}

	if (tmp != 3) {
		funcion3(bloque);
	}
	funcion2(bloque);
}

Al pasar este código a través de CRUST obtenemos el siguiente resultado:

ERROR: Memory block 'bloque', initialized at line 42, is still in use at exit point in line 45
ERROR: Assignment to 'bloque' at line 49, which was already assigned at line 42
ERROR: Argument 1 when calling function 'funcion2' at line 59 was freed at line 57
ERROR: Memory block 'bloque', initialized at line 53, is still in use at exit point in line 60
ERROR: Assignment to 'bloque' at line 53, which was already assigned at line 42
ERROR: Memory block 'bloque', initialized at line 42, is still in use at exit point in line 60
Total: 6 errors.

Aquí nos está avisando de todos los errores que hemos cometido, que son:

  • Si tmp vale 5 saldremos en el return de la primera comparación, con lo que el bloque que inicializamos en la línea 42 no se libera y tendremos una fuga de memoria.
  • Si tmp vale 7 u 8 estaremos sobreescribiendo un puntero que apunta a un bloque válido en la línea 49, con lo que tendremos una fuga de memoria.
  • Si tmp tiene un valor diferente de 3 liberaremos el bloque en la línea 49, con lo que al llamar a funcion2() tendremos una referencia colgante.
  • Si tmp vale 3 todo parecerá funcionar correctamente hasta llegar al final de la función, donde nos encontraremos con que el bloque nunca se libera y tendremos una fuga de memoria. Este error nos aparece dos veces porque en una de las ramas de ejecución no liberamos el bloque recibido al principio (línea 42) y en la otra no liberamos el bloque obtenido cuando tmp vale 7.

Por supuesto, CRUST tiene algunas limitaciones. Por ejemplo, sólo recuerda si una variable es NULL (vale 0) o no (valor distinto de 0), pero no valores concretos. Esto significa que este código será analizado correctamente:

void main() {

	un_tipo_t bloque = funcion1();

	if (bloque != NULL) {
		funcion3(bloque);
		bloque = NULL;
	}

	if (bloque != NULL) {
		funcion2(bloque);
	}
}

CRUST sabe que bloque, tal cual es devuelto por funcion1() puede ser NULL o no NULL, pero cuando llega al primer if y analiza ambas posibles ramas, en la de dentro del if marca a bloque como no NULL, y en la de fuera como NULL. Cuando llama a funcion3() el bloque es liberado, y por eso no devuelve un error al asignar NULL a dicha variable. A partir de aquí ambas ramas de ejecución tienen NULL como valor de bloque, y CRUST es capaz de detectar correctamente que jamás se llamará a funcion2(), y por eso no devuelve ningún error.

Sin embargo, este bloque sí daría errores, pues CRUST no llega a tener un nivel de control tan fino de los valores de las variables:

void main() {

	uint8_t tmp;

	un_tipo_t bloque = funcion1();

	if (tmp == 3) {
		funcion3(bloque);
	}

	if (tmp != 3) {
		funcion2(bloque);
		funcion3(bloque);
	}
}

Este código devolvería estos errores:

ERROR: Argument 1 when calling function 'funcion2' at line 48 was freed at line 44
ERROR: Argument 1 when calling function 'funcion3' at line 49 was freed at line 44
ERROR: Memory block 'bloque', initialized at line 41, is still in use at exit point in line 51
Total: 3 errors.

Por supuesto, la forma correcta de hacer lo anterior sería esta:

void main() {

	uint8_t tmp;

	un_tipo_t bloque = funcion1();

	if (tmp == 3) {
		funcion3(bloque);
	} else {
		funcion2(bloque);
		funcion3(bloque);
	}
}

La cual sí sería analizada correctamente por CRUST.

Todo esto no son más que unas pinceladas, pues hay mucho más en CRUST (por ejemplo el prestamo de bloques, igual que en RUST), por lo que lo mejor es leerse la documentación completa, que viene en formato PDF.

Como de costumbre, se puede encontrar en mi página web y en el respositorio de CRUST en GitLab.

Cronopete 4

sábado, abril 28th, 2018

Acabo de lanzar una nueva versión de Cronopete, la 4.0. Se trata de una versión con muchos cambios internos, aunque externamente puede parecer muy similar.

El primer gran cambio es que ahora tiene un sistema de backends para hacer los backups. Esto era algo que estaba medio hecho desde la primera versión, pero el problema es que, sencillamente, estaba mal hecho: los backends de las versiones viejas sólo daban acceso a un disco, mientras que la lógica de las copias de seguridad estaba por encima. Esto limitaba mucho, porque exigía que donde se hiciesen los backups soportase enlaces a archivo y otras cosas. El nuevo sistema de backend, en cambio, asume completamente TODO el proceso de copia de seguridad; básicamente, cronopete le dice al backend: “quiero que me copies estas carpetas”, o “dame la lista de backups que tienes”, o ” recupera este fichero desde este backup”. Pero no le interesa COMO está hecho el backup. Eso es tarea de cada backend.

Por supuesto es fundamental conservar el sistema viejo de copias de seguridad, por lo que el primer backend funcional que tiene hace copias exactamente igual que el sistema anterior, pero con una diferencia: ahora utiliza la utilidad RSYNC en lugar de código propio, lo que ha permitido eliminar de un plumazo un bug misterioso que hacía que, muy de vez en cuando, apareciesen carpetas con nombres raros en la carpeta personal. Por supuesto, se aprovecha de que RSYNC permite hacer copias de seguridad con la misma estructura que las viejas versiones de cronopete (los ficheros que no han cambiado son enlaces duros al mismo fichero de la copia anterior, lo que permite ahorrar muchísimo espacio).

Con el nuevo sistema, implementar un backend para hacer copias en remoto debería ser relativamente trivial, aunque el problema es cuando tendré tiempo de ponerme en serio con ello (a fin de cuentas, es algo que quiero probar bien antes de lanzar).

Otra novedad, esta vez más sencilla, es que por fin permite que varios usuarios compartan un mismo disco de copias. Por un fallo tonto, las versiones anteriores ponían la carpeta cronopete, en el disco de destino, con permisos de escritura sólo para el usuario que había formateado el disco. Eso significaba que dicho usuario podía hacer copias sin problema, pero en cuanto otro usuario intentase usar el mismo disco para hacer sus copias, fallaría y le propondría formatearlo. Ahora la carpeta cronopete tiene permisos de escritura para todo el mundo, y dentro, igual que antes, hay una carpeta por usuario, en la que sólo dicho usuario tiene permisos de lectura, escritura y atravesado (por motivos obvios: otros usuarios no deberían tener acceso a mis copias de seguridad, pues son MIS datos).

Otro cambio es que ahora borra las copias nuevas después de hacer la copia de seguridad, lo que permite garantizar que si enciendes el equipo sólo un momento, se haga al menos una copia rápidamente. Además, el borrado de copias viejas se hace de manera más segura: antes se borraba directamente el directorio, lo que podía suponer un problema si se apagaba el ordenador o si cronopete fallaba en mitad del borrado, pues una copia quedaría “a medias”. Ahora, sin embargo, primero se renombran las copias a borrar añadiendo una letra justo antes, de manera que las copias que no se deben tener en cuenta están debidamente etiquetadas; luego se sincroniza el disco, y finalmente se procede a borrar las carpetas así marcadas. Esto tiene otra ventaja, y es que una copia de seguridad no válida nunca aparecerá en la interfaz de restauración de ficheros.

Por último hay varios cambios estéticos y menores, sobre todo en la interfaz de restauración de ficheros. Ahora, por ejemplo, la linea de tiempos muestra la fecha correspondiente, lo que da una idea más precisa de por donde andamos y hasta donde podemos llegar que antes.

También se puede ahora filtrar por tipo de archivo, y, además, cronopete recordará entre ejecuciones si se quería ver en modo iconos o en modo lista de archivos.

Nueva versión de Autovala

miércoles, marzo 28th, 2018

Hoy saqué una nueva versión de Autovala que añade un detalle muy sencillo pero muy importante: el soporte para anotaciones para traductores.

Resulta que xgettext, la herramienta que extrae del código fuente los textos que hay que traducir a las diversas lenguas, tiene una funcionalidad muy importante, que es la posibilidad de añadir como notas para los traductores cualquier comentario del código que se encuentre en la línea inmediatamente anterior a la de una cadena traducible. Hasta ahora yo daba por hecho que eso se realizaba de manera automática, pero hoy descubrí que no, que hace falta pasar un parámetro en la línea de comandos, en concreto –add-comments. Es más, es posible añadir un tag a continuación, y sólo aquellos comentarios que empiecen por dicho tag serán considerados una nota para los traductores.

Como digo, pensaba que era automático, por lo que Autovala no lo tenía en cuenta, pero al descubrir esto decidí que era una funcionalidad lo suficientemente importante como para que estuviese disponible. Así que ahora es posible añadir en la configuración una línea con po_comment_tag, y todos los comentarios previos a una cadena traducible serán añadidos como notas para traductores. Pero también es posible añadirla como po_comment_tag: XXXXXX, en cuyo caso sólo se añadirán aquellos comentarios que comiencen con XXXXXX.

Como de costumbre, es posible bajar Autovala desde mi página web, o bien desde el repositorio Github de Autovala.

Autovala y Multipackager

miércoles, marzo 7th, 2018

Recientemente saqué versiones nuevas de Autovala y Multipackager.

En el caso de Autovala, se trata de la 1.3.0. El motivo fue que en la última actualización de paquetes de mi sistema operativo se pasó a Vala 0.39. Sin embargo, este compilador busca los ficheros VAPI en el directorio de la versión 0.40. La solución consistió en no deducir el directorio donde están los ficheros VAPI a partir de la versión del compilador, sino preguntarle donde los va a buscar (para lo que basta con hacer “valac –api-version”). Con esto, Autovala puede por fin encontrar dichos ficheros y detectar automáticamente las dependencias del programa.

El cambio en Multipackager surgió, precisamente, para corregir un problema al crear los paquetes de Autovala, y es que, debido al cambio de nombre de una biblioteca desde Debian Estable a Debian SID, el fichero de configuración sólo servía para uno de ellos. La solución fue modificarlo para que sea capaz de detectar alternativas a paquetes (el comando “|” en las dependencias, para indicar que se puede poner un paquete cualquiera de una lista).

Como de costumbre, están disponibles en mi web y en mi repositorio de GIT.

Multipackager más rápido

domingo, mayo 22nd, 2016

He lanzado una nueva versión de Multipackager con una interesante novedad: ahora es muchísimo más rápido. Para ello utilizo OverlayFS.

Para entender por qué es así, cabe explicar que cada vez que se utiliza por primera vez un sistema operativo concreto (por ejemplo: debian jessie i386), multipackager genera dos copias: una para construir paquetes, y otra para lanzar shells.

Hasta aquí nada especial. Sin embargo, la copia para construir paquetes no se utiliza nunca directamente. Cuando se va a construir uno, lo primero que se hace es sacar una copia de dicha copia, y sólo entonces se instalan los paquetes necesarios para crear el paquete. Si todo va bien se borra la copia vieja, y ya tenemos la máquina original con nuevos paquetes; si algo falla, se borra la copia nueva y se restaura la vieja. Así nunca se queda un sistema “a medias”. Por último se hace una nueva copia para crear, esta vez sí, dentro de ella el nuevo paquete. Esta copia se destruye una vez que se ha terminado la generación.

Este sistema permite garantizar que las copias locales de cada sistema operativo están siempre “sanas”, lo que evita tener que generar una nueva completa cada vez que queramos crear un paquete. El inconveniente es que sacar cada copia lleva MUCHO tiempo. Y lo que es peor: a medida que se instalan más y más paquetes, la copia tarda más y más.

La solución consistió en no hacer copias, sino utilizar OverlayFS para poder realizar las operaciones sin modificar la máquina original. Esta operativa es inmediata en el segundo caso, cuando queremos construir el paquete en una máquina que se borrará cuando se termine. Sin embargo, para el primer caso tuve que rascarme un poco la cabeza, pues si la operación de instalar paquetes termina correctamente es necesario “aplicar los cambios” sobre la máquina virtual original. Esta operación, afortunadamente, no es muy complicada.

El resultado es que los tiempos para generar los distintos paquetes se han reducido en un orden de magnitud, lo que no está nada mal, teniendo en cuenta que actualmente estoy generando entre seis y ocho paquetes por programa (debian, ubuntu, fedora y arch, cada una en 32 y 64 bits).

Nueva version del entorno Gentoo para WebTV

jueves, julio 30th, 2015

Acabo de subir a mi web la versión 2 del entorno de desarrollo Gentoo para el WebTV. Con ella ya debería ser posible instalar una versión decente de transmission. Ahora voy a empezar a trabajar en aplicaciones extra.

Paquetes para todos los públicos

domingo, abril 26th, 2015

Tras el lanzamiento original de Multipackager, he ido haciendo varias mejoras sobre él hasta llegar a la actual revisión 0.12. Ahora no sólo es mucho más rápido a la hora de generar paquetes, sino que también soporta crearlos para Fedora. Gracias a él he podido publicar en mi web paquetes para Debian, Ubuntu y Fedora, para arquitecturas de 32 y 64 bits, de Autovala, Cronopete, DevedeNG, FBZX y, por supuesto, del propio Multipackager.

A disfrutarlo con salud.

Lanzado Multipackager

miércoles, abril 15th, 2015

Acabo de lanzar la primera versión de Multipackager. Se trata de un programa que simplifica la creación de paquetes para múltiples distribuciones y arquitecturas. La idea es sencilla: si tienes instalada Debian de 64 bits, es relativamente sencillo crear un paquete para Debian de 64 bits; pero hacer uno para Debian de 32 bits la cosa empieza a complicarse. Y ya no digamos para hacerlo para Ubuntu de 32 o 64 bits (aunque deriva de Debian, a veces las bibliotecas no son del todo compatibles). Y mejor no hablemos para hacer un paquete para Fedora.

La solución más rápida consiste en usar una máquina virtual con el sistema operativo deseado, pero tiene el inconveniente de que montar una máquina para cada uno es una tarea pesada y engorrosa.

Es justo aquí donde entra en juego Multipackager: aprovechando que estas distribuciones tienen herramientas que permiten generar un sistema base de manera sencilla, se me ocurrió hacer un programa que, dándole una tripla de datos (“distribución, versión, arquitectura”; por ejemplo “debian, jessie, i386”, o “ubuntu, utopic, amd64”), genere automáticamente una máquina virtual para ella, completamente prístina y limpia de polvo y paja, y la utilice para generar, lo más automáticamente posible, un paquete para un proyecto determinado.

El resultado es que es posible disponer de una lista de dichas triplas y, tan sólo indicando la ruta a un proyecto, Multipackager generará automáticamente cada una de ellas, instalará las dependencias necesarias para el proyecto, compilará el código en su interior, generará el paquete, lo copiará al exterior, y limpiará los datos temporales.

En estos momentos Multipackager puede trabajar con máquinas Debian y Ubuntu (Fedora está en camino), en arquitecturas de 32 y 64 bits, y puede generar paquetes binarios y de Python3. A mayores permite generar una máquina virtual con dicha tripla y lanzar una shell interactiva en su interior, por si necesitamos hacer pruebas o demás. En este caso, al salir no se borra ningún dato temporal, por lo que es posible volver a entrar en cualquier momento.

Por último, incluye una caché de distribuciones para que no sea necesario bajar el sistema base de cada vez (una tarea bastante larga).

Actualizado Cronopete

domingo, abril 5th, 2015

Ya iba tocando actualizar Cronopete en condiciones, pues había un pequeño bug que me estaba tocando mucho las narices: de vez en cuando, durante el arranque, decía que el disco no estaba disponible y tenía que montarlo yo a mano. Tras rebuscar y probar, descubrí que lo que ocurría era que, a veces, el sistema operativo lo montaba en una carpeta diferente de la habitual, y por eso Cronopete no era capaz de encontrarlo.

A la vez, descubrí que ya no funcionaba el formateo de discos; sin embargo, el código no había cambiado, así que llegué a la conclusión de que el problema se debía a que el nuevo demonio udisks2, aunque emulaba la antigua interfaz de udisks, no lo hacía correctamente.

Por último, un problema menor pero que me parecía incómodo: la ventana de configuración, durante una copia, cambiaba de ancho debido al texto que indica qué fichero se está copiando.

Ante todo esto, decidí que ya tocaba meterle mano y resolverlo todo, así que procedí a pelearme con la nueva interfaz DBus de udisks2. Aunque Vala incorpora una serie de clases para usarla, no es nada intuitivo, y al final ahorré tiempo utilizando DBus directamente.

Por otro lado, cambié la manera en que se busca la ruta donde hacer el backup: ahora no almaceno en el registro la carpeta donde se supone que está el disco, sino directamente el UUID de la partición. De esta manera no importa que cambie entre arranques, siempre lo encontrará… O eso pensaba, porque resulta que me encontré con que, en ocasiones, la ruta de montaje puede cambiar entre que se arranca Cronopete y que éste quiere hacer el primer backup (no preguntéis, yo tampoco me lo explico). Por eso tuve que hacer un segundo cambio y utilizar siempre el UUID cada vez que se va a iniciar una copia, y no sólo al arrancar.

Y ya puestos, aproveché para echar un vistazo a los distintos warnings que salían durante la compilación por usar funciones obsoletas, y corregí todas menos dos: las referidas al uso de threads. El motivo es que recientemente hubo un cambio en la implementación de éstos en Linux que disparó un bug en la generación de código en Vala. Ese bug está resuelto en Vala 0.26, que es la que tengo en Debian; pero dado que la actual versión estable de Ubuntu tiene Vala 0.24, he decidido esperar unos meses antes de corregir ese.

También descubrí que los bookmarks no se mostraban en la ventana de restauración de ficheros, porque GTK3 utiliza un archivo diferente para almacenarlos. Ahora ya está resuelto.

Y por último, he hecho cambios para garantizar que, siempre que se pueda, el disco de backups estará montado. Así, si se desmonta accidentalmente, Cronopete lo volverá a montar. La única forma de retirarlo es detener la copia de seguridad. Esto permite evitar que se detenga la copia de seguridad por error.

Actualizado FBZX

miércoles, abril 1st, 2015

Tras recibir un informe de error de un usuario, decidí que ya era hora de actualizar un poquito FBZX. Sin embargo, estoy tan acostumbrado a trabajar orientado a objeto con Vala y Python que no me apetecía ponerme a trabajar en C puro y programación funcional, así que me lié la manta a la cabeza y refactoricé el código de FBZX en C++. El motivo principal fue reescribir, esta vez sí desde cero, el código del emulador de cinta. Al utilizar herencia simplifica mucho el código, al permitir compartir mucho de él entre ficheros TAP y TZX. Además, ahora permite hacer cosas que antes no eran posibles, como por ejemplo carga rápida de ficheros TZX, e incluso grabar en ambos formatos.

Ya puestos, aproveché para pulir la interfaz y cambiar la tipografía por otra más elegante (y además, proporcional, gracias a código extraído de TTOS). Y también aproveché para añadir detalles extra, como por ejemplo ruido en la entrada de audio cuando la cinta no está en marcha (de manera que el borde parpadee cuando el sistema está esperando a que se ponga en marcha la cinta), o que cuando la cinta esté reproduciéndose el emulador trabaje a máxima velocidad, y que vuelva a velocidad normal cuando se pause.

También corregí algunos bugs, como por ejemplo algunos problemillas que había con la carga y grabación rápidas, sobre todo en modo +3. También retiré todas las palabras clave “register” e “inline” de C porque daban problemas a la hora de compilar con GCC 5. Ah, y al listar ficheros para escoger un TAP, TZX, SNA, etc. aparecen ordenados alfabéticamente, lo que simplifica la búsqueda. Y, por supuesto, limpieza de variables no usadas, etc.


Utilizamos cookies para garantizar que tenga la mejor experiencia en nuestro sitio web.